ALİ HOCA
  İlginç Sayılar
 

iconflash.gif (1595 bytes)Sihirli Kareler:

3 x 3: Birbirini yatay, dikey ve çapraz takip eden   üç karenin toplamı, 15.

8

1

6

3

5

7

4

9

2

4 x 4: Birbirini yatay, dikey ve çapraz takip eden  dört karenin toplamı, 34.

16

2

3

13

5

11

10

8

9

7

6

12

4

14

15

1

5 x 5: Birbirini yatay, dikey ve çapraz takip eden beş karenin toplamı, 65.

3

16

9

22

15

20

8

21

14

2

7

25

13

1

19

24

12

5

18

6

11

4

17

10

23



iconflash.gif (1595 bytes)İlginç Sayılar(1):

3² + 4² = 5²
10² + 11² + 12² = 13² + 14²
21² + 22² + 23² + 24² = 25² + 26² + 27²
36² + 37² + 38² + 39² + 40² = 41² + 42² + 43² + 44²
.
.
.

iconflash.gif (1595 bytes)İlginç Sayılar(2):

          Üç basamaklı herhangi bir sayıyı  iki kere yanyana yazarak elde ettiğimiz yeni sayı, kesinlikle 
7, 11, 13, 77, 91, 143, 1001 sayılarına kalansız olarak bölünür(neden?).

Örnek: 831831

831831 / 7       = 118833
831831 / 11     = 75621
831831 / 13     = 63987
831831 / 77     = 10803
831831 / 91     = 9141
831831 / 143   = 5817
831831 / 1001 = 831


iconflash.gif (1595 bytes)İlginç Sayılar(3):

1 x 8 + 1 = 9
12 x 8 + 2 = 98
123 x 8 + 3 = 987
1234 x 8 + 4 = 9876
12345 x 8 + 5 = 98765
123456 x 8 + 6 = 987654
1234567 x 8 + 7 = 9876543
12345678 x 8 + 8 = 98765432
123456789 x 8 + 9 = 987654321



iconflash.gif (1595 bytes)
İlginç Sayılar(4):

12 x 42 = 21 x 24
23 x 96 = 32 x 69
24 x 84 = 42 x 48
13 x 62 = 31 x 26
46 x 96 = 64 x 69


iconflash.gif (1595 bytes)İlginç Sayılar(5):

3 x 37 = 111
6 x 37 = 222
9 x 37 = 333
12 x 37= 444
15 x 37 = 555
18 x 37 = 666
21 x 37 = 777
24 x 37 = 888
27 x 37 = 999

iconflash.gif (1595 bytes)İlginç Sayılar(6):

(0 x 9) + 8 = 8 
(9 x 9) + 7 = 88
(98 x 9) + 6 = 888
(987 x 9) + 5 = 8888
(9876 x 9) + 4 = 88888
(98765 x 9) + 3 = 888888
(987654 x 9) + 2 = 8888888
(9876543 x 9) + 1 = 88888888
(98765432 x 9) + 0 = 888888888
(987654321 x 9) - 1 = 8888888888




e Sayısı:

 

1 + (1/1!) + (1/2!) + (1/3!) + (1/4!) + ... + (1/n!) serisinin toplamı "e" sayısını verir. Yaklaşık değeri:

e = 2.71828182...dir. 



p (pi) Sayısı:     

 

          Kısaca bir dairenin çevresinin çapına oranı, p sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarfetmişlerdir.

          p' nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır.

          Arşimet  3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı. Şu anda bilinen değerden birkaç basamak:

p=3,141592653589793238462643383279502884197169399375105820974944592
 30781640
6286208998628034825342117067982148086513282306647093844
60955058223172535940
81284811174502841027.....

 



 
  Siteyi 37622 ziyaretçi (58312 klik) kişi ziyaret etti  
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol